Unique Common Fixed Point Theorem On Weak Commuting Mapping

BIJENDRA SINGH¹, G.P.S RATHORE², PRIYANKA DUBEY^{3*} and NAVAL SINGH⁴

¹Professor&Dean, School of Studies in Mathematics, Vikram University, Ujjain M.P. (INDIA)

²Sr. Scientist, K.N.K Horticulture College, Mandsaur- M.P. (INDIA)

³Bansal Institute of Research and Technology, Bhopal- M.P. (INDIA)

⁴Govt.Science and Commerce College, Benazeer, Bhopal- M.P. (INDIA)

(Acceptance Date 19th February, 2014)

Abstract

The aim of this paper is to establish a new fixed point theorem on complete metric space for weak commuting mapping. Our results generalize several corresponding relations of weak commuting mapping in metric space.

Key words: Fixed point, weak commuting mapping, metric space.

AMS Classification No. (2000): 47H10,54H25.

1. Introduction

In 1982 Sessa⁸ defined weak commutativity in the theorem of Jungck³ and its various generalizations by introducing the weak commutativity. Fisher² proved following theorem for two commuting mappings S and T.

Theorem 1.1: If S is a mapping and T is a continuous mapping of the complete metric space X into itself and satisfying the inequality:

$$d(ST, TSy) \le k[d(Tx, TSy) + d(Sy, STx)], \quad (1.1)$$

for all $x, y \in X$, where $0 \le k \le 1/2$, then S and

Thave a unique common fixed point.

Fisher further extended his theorem and proved a common fixed point of commuting mappings S and T.

Theorem 1.2. If S is a mapping and T is a continuous mapping of the complete metric space X into itself and satisfying the inequality:

$$d(ST, TSy) \le k[d(Tx, STx) + d(Sy, TSy)], \quad (1.2)$$

for all $x, y \in X$, where $0 \le k \le 1/2$, then S and T have a unique common fixed point.

Ranganathan⁷ has further generalized

the result of Jungck³ which gives criteria for the existence of a fixed point. Jungck4 introduced again more generalized commutativity, the so called compatibility, which is more general than that of weak commutativity. After that Jungck⁵ coined the term of compatible mappings in order to generalize the concept of weak commutativity. Weak commuting mapping received much attention in recent years 1.9.11.

2. Weak Commuting Mappings and Common Fixed Point

In this section Weak commuting mappings and unique common fixed point theorem in metric space is established. First we give the following definitions:

Definition 2.1. According to Sessa⁸ two self maps S and T defined on metric space (X,d) are said to be weakly commuting maps if and only if $d(STx, TSx) \le d(Sx, Tx)$, for all $x \in X$

Definition 2.2. Two self mappings S and T of metric space (X,d) are said to be weak** commuted, if $S(X) \subset T(X)$ and for any $x \in X$

$$d(S^{2}T^{2}x, T^{2}S^{2}x) \le d(S^{2}Tx, TS^{2}x)$$

$$\le d(ST^{2}x, T^{2}Sx) \le d(STx, TSx)$$

$$\le d(S^{2}x, T^{2}x)$$

Definition 2.3. A map $S: X \to X, X$ being a metric space, is called an idempotent, if $S^2 = S$.

Example 2.1. Let X = [0,1] with

Euclidean metric space and define S and T by $Sx = \frac{x}{x+5}$, $Tx = \frac{x}{5}$ for all $x \in X$, then $[0, 9/10] \subset [0,1]$ where Tx = [0,1] and Sx = [0, 9/10]

$$d(S^{2}T^{2}x, T^{2}S^{2}x) = \frac{x}{6x + 625} - \frac{x}{150x + 625}$$

$$= \frac{144x^{2}}{(6x + 625)(150x + 625)}$$

$$\leq \frac{24x^{2}}{(6x + 125)(30x + 125)}$$

$$= \frac{x}{6x + 125} - \frac{x}{30x + 125}$$

$$= d(S^{2}Tx, TS^{2}x).$$

Implies that $d(S^2T^2x, T^2S^2x) \le d(S^2Tx, TS^2x)$ $d(S^{2}Tx,TS^{2}x) = \frac{x}{6x+125} - \frac{x}{30x+125}$ $=\frac{24x^2}{(6x+125)(30x+125)}$ $\leq \frac{24x^2}{(x+125)(25x+125)}$ $=\frac{x}{x+125}-\frac{x}{25x+125}$ $=d(ST^2x,T^2Sx)$

$$d(S^2Tx, TS^2x) \le d(ST^2x, T^2Sx)$$

$$d(ST^{2}x, T^{2}Sx) = \frac{x}{x+125} - \frac{x}{25x+125}$$

$$d(ST^{2}x, T^{2}Sx) = \frac{24x^{2}}{(x+125)(5x+125)}$$

$$\leq \frac{4x^{2}}{(x+25)(5x+25)}$$

$$= \frac{x}{x+25} - \frac{x}{5x+25}$$

$$= d(STx, TSx)$$

$$d(ST^{2}x, T^{2}Sx) \leq d(STx, TSx)$$

$$d(STx, TSx) = \frac{x}{x+25} - \frac{x}{5x+25}$$

$$= \frac{4x^{2}}{(x+25)(5x+25)}$$

$$\leq \frac{6x^{2}}{25(6x+25)}$$

$$= \frac{x}{25} - \frac{x}{6x+25}$$

$$= d(T^{2}x, S^{2}x)$$

$$d(STx, TSx) \leq d(T^{2}x, S^{2}x)$$

Using [0, 1] for $x \in X$, we conclude that definition (2.2) as follows:

$$d(S^{2}T^{2}x, T^{2}S^{2}x) \le d(S^{2}Tx, TS^{2}x)$$

$$\le d(ST^{2}x, T^{2}Sx) \le d(STx, TSx) \le d(S^{2}x, T^{2}x)$$
for any $x \in X$.

We generalized the result of Yogita R Sharma 10. Lohani and Badshah⁶, a by using another type of rational expression7.

3 Main theorem:

Theorem 3.1. If S is a mapping and Tis a continuous mapping of complete metric space $\{S, T\}$ is weak commuting pair and the following condition

$$\begin{split} d(S^{2}T^{2}x, T^{2}S^{2}y) &\leq \alpha \frac{\left[d(T^{2}x, S^{2}T^{2}x)\right]^{n} + \left[d(S^{2}y, T^{2}S^{2}y)\right]^{n}}{\left[d(T^{2}x, S^{2}T^{2}x)\right]^{n} + \left[d(S^{2}y, T^{2}S^{2}y)\right]^{n}} \\ &+ \beta \frac{\left[d(T^{2}x, S^{2}y)\right]^{2} + \left[d(T^{2}x, T^{2}S^{2}y)\right]^{2}}{\left[2d(T^{2}x, S^{2}y)\right]^{n} + \left[3d(T^{2}x, T^{2}S^{2}y)\right]^{n}} \\ &+ \gamma d\left(T^{2}x, S^{2}y\right) \end{split} \tag{3.1.1}$$

for all x, y in X, where $\alpha, \beta \ge 0$ with $2(\alpha + \beta) + \gamma < 1$, then S and T have a unique common fixed point.

Proof. Let x be an arbitrary point X. Define $(S^2T^2)^n x = x_{2n} \text{ or } T^2(S^2T^2)^n x = x_{2n+1},$

where n = 0,1,2,3,..., by contractive condition (3.1.1),

$$d(x_{2n}, x_{2n+1}) = d(S^2T^2)^n x, T^2(S^2T^2)^n x$$

$$= d(S^2T^2(S^2T^2)^{n-1}x, T^2S^2(T^2(S^2T^2)^{n-1})x)$$

$$= d(S^2T^2(S^2T^2)^{n-1}x, T^2S^2(T^2(S^2T^2)^{n-1})x)$$

$$= d(S^2T^2(S^2T^2)^{n-1}x, T^2S^2(T^2(S^2T^2)^{n-1}x, T^2S^2(T^2(S^2T^2)^{n-1}x))$$

$$= d(S^2T^2(S^2T^2)^{n-1}x, T^2S^2(T^2(S^2T^2)^{n-1}x)$$

$$= d(S^2T^2(S^2T^2)^$$

$$\begin{aligned} &+\beta \frac{\left[a(r^{2}(s^{2}r^{2})^{n-1}x, S^{2}r^{2}(s^{2}r^{2})^{n-1}x\right]^{2}}{\left[2a(r^{2}(s^{2}r^{2})^{n-1}x, S^{2}r^{2}(s^{2}r^{2})^{n-1}x)\right]^{2}} \\ &+\beta \frac{\left[a(r^{2}(s^{2}r^{2})^{n-1}x, S^{2}r^{2}(s^{2}r^{2})^{n-1}x\right]^{2}}{\left[2a(r^{2}(s^{2}r^{2})^{n-1}x, S^{2}r^{2}(s^{2}r^{2})^{n-1}x)\right]^{2}} \\ &+\gamma a(r^{2}(s^{2}r^{2})^{n-1}x, S^{2}r^{2}(s^{2}r^{2})^{n-1}x) \\ &\leq \alpha \frac{\left[d(x_{2n-1}, x_{2n})\right]^{3} + \left[d(x_{2n}, x_{2n+1})\right]^{3}}{\left[d(x_{2n-1}, x_{2n})\right]^{2} + \left[d(x_{2n}, x_{2n+1})\right]^{2}} \\ &+\beta \frac{\left[d(x_{2n-1}, x_{2n})\right]^{2} + \left[d(x_{2n}, x_{2n+1})\right]^{2}}{\left[2d(x_{2n-1}, x_{2n})\right]^{3} + \left[3d(x_{2n}, x_{2n+1})\right]^{3}} \\ &+\gamma d(x_{2n-1}, x_{2n}) \\ &\leq \alpha \left[d(x_{2n-1}, x_{2n}) + d(x_{2n}, x_{2n+1})\right] \\ &+\beta \left[d(x_{2n-1}, x_{2n}) + d(x_{2n}, x_{2n+1})\right] \\ &+\beta \left[d(x_{2n-1}, x_{2n}) + d(x_{2n}, x_{2n+1})\right] \\ &+\gamma d(x_{2n-1}, x_{2n}) \\ &\leq (\alpha + \beta + \gamma)d(x_{2n-1}, x_{2n}) + (\alpha + \beta)d(x_{2n}, x_{2n+1}) \\ &(1 - \alpha - \beta)d(x_{2n}, x_{2n+1}) \leq (\alpha + \beta + \gamma)d(x_{2n-1}, x_{2n}) \\ \Rightarrow d(x_{2n}, x_{2n+1}) \leq \frac{(\alpha + \beta + \gamma)}{(1 - \alpha - \beta)}d(x_{2n-1}, x_{2n}) \\ \Rightarrow d(x_{2n}, x_{2n+1}) \leq Kd(x_{2n-1}, x_{2n}) \\ \text{where } k = \frac{(\alpha + \beta + \gamma)}{(1 - \alpha - \beta)}. \end{aligned}$$

Proceeding in the same manner

$$d(x_{2n}, x_{2n+1}) \le k^{2n-1} d(x_1, x_2).$$

Also $d(x_n, x_m) \le \sum_{i=n}^m d(x_i, x_{i+1})$ for m > n.

Since k < 1, it follows that the sequence $\{x_n\}$

is Cauchy sequence in the complete metric space X and so it has a limit in X, that is

$$\lim_{n\to\infty} x_{2n} = u = \lim_{n\to\infty} x_{2n+1}$$

and since T is continuous, we have

$$u = \lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} T^2(x_{2n}) = T^2 u$$
.

Further,

$$d(x_{2n+1}, S^2u) = d(T^2(S^2T^2)^{n+1}x, S^2u)$$

= $d(T^2(S^2T^2)^{n+1}x, S^2(T^2u))$

for $u = T^{2}u$ $\leq \alpha \frac{\left[d(T^{2}u, S^{2}T^{2}u)\right]^{3} + \left[d(S^{2}T^{2})^{n+1}x, T^{2}(S^{2}T^{2})^{n+1}x\right]^{3}}{\left[d(T^{2}u, S^{2}T^{2}u)\right]^{2} + \left[d(S^{2}T^{2})^{n+1}x, T^{2}(S^{2}T^{2})^{n+1}x\right]^{2}}$ $+ \beta \frac{\left[d(T^{2}u, (S^{2}T^{2})^{n+1}x)\right]^{2} + \left[d(T^{2}u, T^{2}(S^{2}T^{2})^{n+1}x)\right]^{2}}{\left[2d(T^{2}u, (S^{2}T^{2})^{n+1}x)\right]^{3} + \left[3d(T^{2}u, T^{2}(S^{2}T^{2})^{n+1}x)\right]^{3}}$ $+ \gamma d(T^{2}u, (S^{2}T^{2})^{n+1}x)$ $\leq \alpha \left[d(T^{2}u, S^{2}T^{2}u) + d(x_{2n+2}, x_{2n+3})\right]$ $+ \beta \left[d(T^{2}u, x_{2n+2}) + d(T^{2}u, x_{2n+3})\right]$ $+ \gamma d(x_{2n+2}, T^{2}u)$ $\leq \alpha \left[d(u, S^{2}u) + d(x_{2n+2}, x_{2n+3})\right]$ $+ \beta \left[d(u, x_{2n+2}) + d(u, x_{2n+3})\right]$ $+ \gamma d(x_{2n+2}, u)$

Taking limit as $n \to \infty$, it follows that $d(u, S^2 u) \le 0$,

which implies

$$d(u, S^2u) = 0$$
 and so $u = S^2u = T^2u$.

Now consider weak** commutativity of pair $\{S, T\}$ implies that

$$S^2T^2u = T^2S^2u$$
, $S^2Tu = TS^2u$, $ST^2u = T^2Su$ and
so $S^2Tu = Tu$ and $T^2Su = Su$.

$$d(u,Su) = d(S^{2}T^{2}u,T^{2}S^{2}(Su))$$

$$\leq \alpha \frac{\left[d(T^{2}u,S^{2}T^{2}u)\right]^{3} + \left[d(S^{2}(Su),T^{2}S^{2}(Su))\right]^{3}}{\left[d(T^{2}u,S^{2}T^{2}u)\right]^{2} + \left[d(S^{2}(Su),T^{2}S^{2}(Su))\right]^{2}} + \beta \frac{\left[d(T^{2}u,S^{2}(Su))\right]^{2} + \left[d(T^{2}u,T^{2}S^{2}(Su))\right]^{2}}{\left[d(T^{2}u,S^{2}(Su))\right]^{3} + \left[d(S^{2}u,T^{2}S^{2}(Su))\right]^{3}} + \gamma d(T^{2}u,S^{2}(Su))$$

$$= \alpha \frac{\left[d(u,u)\right]^{3} + \left[d(Su,Su)\right]^{3}}{\left[d(u,u)\right]^{2} + \left[d(Su,Su)\right]^{2}} + \gamma d(u,Su)$$

$$+ \beta \frac{\left[d(u,Su)\right]^{2} + \left[d(u,Su)\right]^{2}}{\left[2d(u,Su)\right]^{3} + \left[3d(u,Su)\right]^{3}} + \gamma d(u,Su)$$

$$d(u,Su) \leq \beta \left[d(u,Su) + d(u,Su)\right] + \gamma d(u,Su)$$

$$(1 - 2\beta - \gamma)d(u,Su) \leq 0.$$

This implies that $(1-2\beta-\gamma)\neq 0$. Hence d(u,Su)=0 or Su=u.

Similarly, we can show that Tu=u. Hence, u is a common fixed point of S and T. Now suppose that v is another common fixed point of S and T. Then

$$\begin{split} &d(u,v) = d\left(S^2T^2u, T^2S^2v\right) \\ &\leq \alpha \frac{\left[d\left(T^2u, S^2T^2u\right)\right]^3 + \left[d\left(S^2v, T^2S^2v\right)\right]^3}{\left[d\left(T^2u, S^2T^2u\right)\right]^2 + \left[d\left(S^2v, T^2S^2v\right)\right]^2} \\ &+ \beta \frac{\left[d\left(T^2u, S^2v\right)\right]^2 + \left[d\left(T^2u, T^2S^2v\right)\right]^2}{\left[2d\left(T^2u, S^2v\right)\right]^3 + \left[3d\left(T^2u, T^2S^2v\right)\right]^3} + \gamma d\left(T^2u, S^2v\right) \\ &\leq \alpha \left[d(u, u) + d(v, v)\right] + \beta \left[d(u, v) + d(u, v)\right] + \gamma d(u, v) \\ &d\left(u, v\right) \leq \beta d\left(u, v\right) + 2\gamma d\left(u, v\right) \\ &\left(1 - \beta - 2\gamma\right)d\left(u, v\right) \leq 0 \ . \end{split}$$

Since, $(1 - \beta - 2\gamma) \neq 0$, then d(u, v) = 0. Thus, it follows that u=v. Hence S and T have a unique common fixed point.

References

- Alghamdi, M.A., Radenovic, S. and S. Shahzad., On some generalization of commuting mappings. *Abstre, Appl. Anal.* 2012. Article ID 952052 (2012).
- Fisher, B. Common fixed point and constant mappings on metric spaces, *Math. Sem. Notes, Kobe University* 5, 319-326 (1977).
- Jungek, G, Commuting mappings and fixed points. Amer. Math. Monthly 83, no. 4, 261-263 (1976).
- Jungck, G, Compatible mappings and fixed points, *Internat. J. Math. Sci.*, no. 4, 771-719 (1986).
- Jungck, G. Common fixed points for commuting and compatible maps on compacta Proceedings of the American Mathematical Society 103, no. 3, 977– 983 (1988).

- Lohani, P.C. And Badshah, V.H. Common fixed point and weak**commuting mappings. Bull. Cal. Math. Soc. 87, 289-294 (1995).
- Ranganathan, S. A fixed point theorem for commuting mapping. *Math. Sem. Notes. Kobe. Univ.* 6, 351-357 (1978).
- Sessa, Salvatore., On a weak commutativity condition of mappings in fixed point consideration, publ, *Inst. Math.* (Beograd (N.S) 32(46), 149-153 (1982).
- 9. Sharma. S and Deshpande. B., Common

- fixed points of compatible maps of type (β) on fuzzy metric spaces. *Demonstratio Math.* 35, no. 1, 165–174 (2002).
- Sharma, Y.R. Fixed point theorem onweak commuting mapping and journal of Mathematical application, *International* Archive-4(10), 40-46 (2013).
- 11. Ume, J.S. and Kim, T.H., Common fixed point theorems for weak compatible mappings. *Indian J. Pure Appl. Math.* 32, no. 4, 565–571 (2001).